
Appendix A

Finding Normals for Analytic Surface

Analytic surfaces are smooth, differentiable surfaces that are described by a

mathematical equation (or set of equations). In many cases, the easiest surfaces to

find normals for are analytic surfaces for which you have an explicit definition in the

following form:

V(s,t)=[X(s,t) Y(s,t) Z(s,t)]

where s and t are constrained to be in some domain, and X, Y, and Z are differentiable

functions of two variables. To calculate the normal, find

which are vectors tangent to the surface in the s and t directions. The cross product

is perpendicular to both and, hence, to the surface. The following shows how to

calculate the cross product of two vectors. (Watch out for the degenerate cases where

the cross product has zero length).

The resulting vector should be normalized. To normalize a vector [x y z], calculate its

length

t
V

and
s
V

∂
∂

∂
∂

t
V

s
V

∂
∂

×
∂
∂

[] [] [])()()(yxyxzxzxzyzyzyxzyx vwwvwvvwvwwvwwwvvv −−−=×

222 zyxLength ++=

98

and divide each component of the vector by the length.

As an example of these calculations, consider the analytic surface

V(s, t)=[s2 t3 3-st]

From this

So, for example, when s=1 and t=2, the corresponding point on the surface is (1,8,1),

and the vector (-24,2,24) is perpendicular to the surface at that point. The length of

this vector is 34, so the unit normal vector is (-24/34, 2/34, 24/34) = (-0.70588,

0.058823, 0.70588).

For analytic surfaces that are described implicitly, as F(x, y, z) = 0, the

problem is harder. In some cases, on of the variables can be solved, z = G(x, y), and

put it in the explicit form given previously:

V(s, t) = [s t G(s, t)]

Then continue as described earlier.

If you can’t get the surface equation in an explicit form, you might be able to make

use of the fact that the normal vector is given by the gradient

evaluated at a particular point (x, y, z). Calculating the gradient might be easy, but

finding a point that lies on the surface can be difficult. As an example of an implicitly

defined analytic function, consider the equation of a sphere of radius 1 centered at the

origin:

x2 + y2 + z2 – 1 = 0

This means that

[] [] [],623,30,02 2232 stst
t
V

s
V

andst
t
V

ts
s
V −=

∂
∂×

∂
∂−=

∂
∂−=

∂
∂









∂
∂

∂
∂

∂
∂=∇

z
F

y
F

x
F

F

99

F(x, y, z) = x2 + y2 + z2 – 1

which can be solved for z to yield

Thus, normals can be calculated from the explicit from

as described previously.

If you could not solve for z, you could have used the gradient

as long as you could find a point on the surface. In this case, it’s not so hard to find a

point --- for example, (2/3, 1/3, 2/3) lies on the surface. Using the gradient, the

normal at this point is (4/3, 2/3, 4/3). The unit-length normal is (2/3, 1/3, 2/3), which

is the same as the point on the surface, as expected.

Finding Normals from Polygonal Data

As mentioned previously, you often want to find normals for surfaces that are

described with polygonal data such that the surfaces appear smooth rather that

faceted. In most cases, the easiest way for you to do this is to calculate the normal

vectors for each of the polygonal facets and then to average the normals for

neighboring facets. Use the averaged normal for the vertex that the neighboring

facets have in common. Figure A-1 shows a surface and its polygonal approximation.

221 yxz −−±=

[]zyxF 222=∇

[]221),(tststsV −−=

100

To find the normal for a flat polygon, take any three vertices v1, v2, and v3 of the

polygon that do not lie in a straight line. The cross product

[v1 – v2] x [v2 – v3]

is perpendicular to the polygon. (Typically, you want to normalize the resulting

vector.) Then you need to average the normals for adjoining facets to avoid giving to

much weight to one of them. For instance, in the example shown in Figure A-1, if n1,

n2, and n3 are the normals for three polygons meeting a t point p, calculated n1+n2+n3

and the normalize it. (you can get a better average if you weight the normals by the

size of the angles at the shared intersection.) The resulting vector can be used as the

normal for point P.

Homogeneous Coordinates

OpenGL commands usually deal with two-and three-dimensional vertices, but

in fact all are treated internally as three-dimensional homogeneous vertices

comprising four coordinates. Every column vector (x, y, z, w)T represents a

homogeneous vertex if at least on of its elements is nonzero. If the real number a is

nonzero, the (x, y, z, w)T and (ax, ay, az, aw)T represent the same homogeneous

vertex. (This is just like fractions: x/y = (ax)/(ay).) A three-dimensional euclidean

space point (x, y, z)T becomes the homogeneous vertex with coordinates (x, y, z, 1)T ,

and the two-dimensional euclidean point (x, y)T becomes (x, y, 0.0, 1.0)T .

As long as w is nonzero, the homogeneous vertex (x, y, z, w)T corresponds to

the three-dimensional point (x/w, y/w, z/w)T . Fi w = 0.0, it corresponds to no

Figure A-1: Averaging and normal vecters .

101

euclidean point, but rather to some idealized “point at infinity”. To understand this

point at infinity, consider the point (1, 2, 0, 0), and note that the sequence of points

(1, 2, 0, 1), (1, 2, 0, 0.01), and (1, 2.0, 0.0, 0.0001), corresponds to the euclidean

points (1, 2), (100, 200) and (10000, 20000). This sequence represents points rapidly

moving toward infinity along the line 2x = y. Thus, you can think of (1, 2, 0, 0) as

the point at infinity in the direction of that line.

Note: OpenGL might not handle homogeneous clip coordinates with x<0 correctly.

To be sure that your code is portable to all OpenGL systems, use only nonnegative w

values.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shearing)

and projections (such as perspective and orthographic) can all be represented by

applying an appropriate 4x4 matrix to the coordinates representing the vertex. If v

represents a homogeneous vertex and M is a 4x4 transformation matrix, the Mv is the

image of v under the transformation by M. In computer-graphics applications, the

transformations used are usually nonsingular—in other words, the matrix M can be

inverted. This is not required, but some problems arise with nonsingular

transformations.

After transformation, all transformed vertices are clipped so that x, y, and z are

in the range [-w, w] (assuming w>0). Note that this range corresponds in euclidean

space to [-1.0, 1.0].

Transforming Normals

Normal vectors are not transformed in the same way as vertices or position

vectors. Mathematically, it is better to think of normal vectors not as vectors, but as

planes perpendicular to those vectors. Then, the transformation rules for normal

vectors are described by the transformation rules for perpendicular planes.

A homogeneous plane is denoted by the row vector (a, b, c, d), where at least

one of a, b, c, or d is nonzero. If q is a nonzero real number, then (a, b, c, d) and

102

(qa, qb, qc, qd) represent the same plane. A point (x, y, z, w)T is not the plane

(a, b, c, d) if ax+by+cz+dw=0. (If w=1, this is the standard description of a euclidean

plane.) In order for (a, b, c, d) to represent a euclidean plane, at least one of a, b, or c

must be nonzero. If they are all zero, then (0, 0, 0, d) represents the “plane at

infinity,” which contains all the “points at infinity.”

If p is a homogeneous plane and v is an homogeneous vertex, then the

statement “v lies on plane p” is written mathematically as pv=0, where pv is normal

matrix multiplication. If M is a nonsingular vertex transformation (that is, a 4x4

matrix that has an inverse M-1), then pv=0 is equivalent to pM-1Mv=0, so Mv lies on

the plane pM-1. Thus, pM-1 is the image of the plane under the vertex transformation

M.

If you like to think of normal vectors as vectors instead of as the planes

perpendicular to them, let v and n be vectors such that v is perpendicular to n. Then,

nTv=0, thus, for an arbitrary nonsingular transformation M, nTM-1Mv=0, which

means that nTM-1 is the transpose of the transformed normal vector. Thus, the

transformed normal vector is (M-1)Tn. In order words, normal vectors are

transformed by the inverse transpose of the transformation that transforms points.

Transformation Matrices

Although any nonsingular matrix M represents a valid projective

transformation, a few special matrices are particularly useful. These matrices are

listed in the following subsections.

Translation

The call glTranslate*(x, y, z) generates T, where

103

Scaling

The call glScale*(x, y, z) generates S, where

Notice that S-1 is defined only if x, y, and z are all nonzero.

Rotation

The call glRotate*(a, x, y, z) generates R as follows:

Let v = (x, y, z)T , and u = v/||v|| = (x’, y’ , z’)T .

Also let

 and M = uuT + (cos a)(I-uuT) + (sin a) S

Then



















−
−
−

=



















= −

1000

100

010

001

1000

100

010

001

1

z

y

x

Tand
z

y

x

T

























=



















= −

1000

0
1

00

00
1

0

000
1

1000

000

000

000

1

z

y

x

Sand
z

y

x

S

















−
−

−
=

0''

'0'

''0

xy

xz

yz

S

104

where m represents elements from M, which is a 3x3 matrix.

The R matrix is always defined. If x = y = z =0, then R is the identity matrix.

You can obtain the inverse of R, R-1, by substituting –a for a, or by transposition.

The glRotate*() command generates a matrix for rotation about an arbitrary axis.

The corresponding matrices are as follows:

As before, the inverses are obtained by transposition.

Perspective Projection

The call glFrustum(l, r, b, t, n, f) generates R, where



















=

1000

0

0

0

mmm

mmm

mmm

R

















 −



















−


















−

1000

0100

00cossin

00sincos

:)1,0,0,(*

1000

0cos0sin

0010

0sin0cos

:)0,1,0,(*

1000

0cossin0

0sincos0

0001

:)0,0,1,(*

aa

aa

aglRotate

aa

aa

aglRotate

aa

aa
aglRotate

105

R is defined as long as l ≠ r, t ≠ b, and n ≠ f.

Orthographic Projection

The call glOrtho(l, r, b, t, n, f) generates R, where

R is defined as long as l ≠ r, t ≠ b, and n ≠ f.

























+−−
−

+−

+−

=

























−
−

−
−
+−

−
+

−

−
+

−

= −

fn
nf

fn
nf

n
bt

n
bt

n
r

n
r

Rand

nf
fn

nf
nf

bt
bt

bt
n

r
r

r
n

R

22
)(

00

1000
2

0
2

0

2
1

00
2

1

0100

2)(
00

0
2

0

0
1
1

0
1

2

1

























+
−
−

+−

+−

=

























−
+−

−
−

−
+−

−

−
+−

−

= −

1000
22

00

2
0

2
0

2
1

00
2

1

1000

2
00

0
2

0

1
1

00
1

2

1

fnnf

btbt

rr

Rand

nf
nf

nf

bt
bt

bt

r
r

r

R

